Stoichiometry Worksheet

- 1. $Na_2SIO_3(s) + 8 HF(aq) \rightarrow H_2SiF_6(aq) + 2 NaF(aq) + 3 H_2O(l)$
- a. How many moles of HF are needed to react with 0.300 mol of Na₂SiO₃?
- b. How many grams of NaF form when 0.500 mol of HF reacts with excess Na₂SiO₃?
- c. How many grams of Na₂SiO₃ can react with 0.800 g of HF?
- 2. $C_6H_{12}O_6$ (aq) \rightarrow 2 C_2H_5OH (aq) + 2 CO_2 (g)
- a. How many moles of CO_2 are produced when 0.400 mol of $C_6H_{12}O_6$ reacts in this fashion?
- b. How many grams of C₆H₁₂O₆ are needed to form 7.50 g of C₂H₅OH?
- c. How many grams of CO₂ form when 7.50 g of C₂H₅OH are produced?
- 3. $Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$ (unbalanced!)
- a. Calculate the number of grams of CO that can react with $0.150 \ kg$ of Fe_2O_3

b. Calculate the number of grams of Fe and the number of grams of CO_2 formed when $0.150\ \text{kg}$ of Fe_2O_3 reacts

- 4. 2 NaOH (s) + CO₂ (g) \rightarrow Na₂CO₃ (s) + H₂O (l)
- a. Which reagent is the limiting reactant when 1.85 mol NaOH and 1.00 mol CO_2 are allowed to react?

- b. How many moles of Na₂CO₃ can be produced?
- 5. $C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$
- a. What is the theoretical yield of C_6H_5Br in this reaction when 30.0 g of C_6H_6 reacts with 65.0 g or Br_2 ?

b. If the actual yield of C_6H_5Br was 56.7 g, what is the percent yield?

Mixed Stoichiometry Practice	Name	
•	Date	
Write and/or balance the following equations (removed cross charges for ionic compounds!!!) Use the national solve the following stoichiometry problems. Use unyour answer to sig figs.	nole ratios from the bala	nced equations to
1. Potassium chlorate decomposes into potassium	chloride and oxygen gas	
Balanced Equation:		
How many moles of oxygen are produced when decompose completely?	3.0 moles of potassium o	chlorate
3. Butane (C ₄ H ₁₀) undergoes complete combustion	٦.	
Balanced Equation:		
4. How many grams of CO ₂ are produced when 88 butane?	∃g of O₂ are reacted with	an excess of
5. Water decomposes into hydrogen gas and oxyg	uon gas by clostrolysis	
	en gas by electrolysis.	
Balanced Equation:		
6. How many grams of hydrogen will be produced	when 6.0 moles of oxyge	n are produced?
7. How many grams of water are required to produ	ice 9.00 grams of hydrog	en?

8. Cobalt(II) chloride reacts with fluorine in a single replacement reaction to produce cobalt(II) fluoride and chlorine gas.
Balanced Equation:
9. How many grams of fluorine are required to produce 290.8 g of cobalt(II) fluoride?
10. Balance the following equation. Strontium chloride reacts with sulfuric acid to produce
hydrochloric acid and strontium sulfate. Balanced Equation:
Datanoed Equation.
What is the mass of strontium chloride that reacts with 300.0 g of sulfuric acid?
11. Solid iron(III) oxide reacts with hydrogen gas to form iron and water.
Balanced Equation:
12. How many grams of iron are produced when 450 grams of iron(III) oxide are reacted?
13. How many grams of water will be produced when 0.0155 moles of hydrogen gas react
completely with iron(III) oxide?

. .

(D Nazsi Us(s) - 8 HF (cop) > see luebosge la solution. (2) (6 H12 Obcog) > 2 (2H5 OH (09) + 2 (026) € 0,400ml (otto > ? nd (oz (0,400 ml (6 Ha 08) 2 ml (02) = 0. Suand (Or produced (7.50 g Citts OH, han much (6 Hicos needled? i. (7,50g City of) (1 mol (2H50H) = 0.163 mol (2H50H) ii. (0.163 md (2HsOH) (Imd Co Hiz On) = 0.0 F15 md CoHiz &

in. (0,0815ml CoHopo) (1809 CoHopo) = 14,79 CoHopo

ferOz+ 3(0-) 2fe+ 3(02 gand (1509 feros) (Interos) = 0.94 ml for 03 nd Fords (0.94 and Fez 03) 3 and (0) = 7.82 and (0) ed>s (2.82 rd (0)/28g(0) = 78.96g(0) (b) (0.94 nd fer 03) (2 nd fer 03) = 1.88 nd fe (1.58 nd fe) (55,859 Re) = (0 \$9 Fe (0,94 rd Fez 03) (3 nd (02) = 2,52 rd (02

(2.82 ml (b) (445 (G) = 124,19 (C2

2 North + (Oz >) Nor (Oz + H20) (Ind(Oz) (Ind(Oz) - 2 nel North (LD) (7.85 MNaOH) (Ind (Or) = 0,925 M(Ce) (185 Mach) Ind Naz (03) = 0,925 M Naz (9) (6H6+B-2) (6H5B++B-30.09 65.09 (E) (30.05 (6Hp) (Ind C6Hp) = 6.355 and (6Hp (LR) (650g Br) / 100 Br) = 0,41 mol Br (0,385 m) (6Hs B) (156.9 5(6Hs B) - 60,49 (6Hs B) (b) actual = 56.7, 90 = \frac{56.75}{60.45} x(00 = 93,9%) yield

(1) 2K(103 > ZKQ+302 (s.) 3,0ml, ?.nd (3.0m/k(163)/ 3cMa) - 4,5MO2 (3) 2-C4HU+130,>810,+104,0 (A) X5 88502 ?.9 i (88902) (IndOz) = 2,75 mdOz il. (2,75 mlos) (8 ml(02) - 1,69 ml(02 iii. (1.69 no cor) - 44 s(or) = 74.4 g (or

(8) 1 CoC(2+ 1 F2 > 1 COF2 + 1C/2 2.90.89 (290.89 (of) / Ind (of) = 3,0 ml (of) (3.0 ml(of) \ \ \land (of) = 3.0 ml & (3,0 whe) 36afr - 114.0496

