APES "CHEMISTRY REVIEW" NOTES ~ THERMOCHEMISTRY

- I. Energy
 - A. HEAT (q)—energy flowing from warmer to cooler objects or areas
 - **B. THERMOCHEMISTRY**
 - 1) the study of heat changes in chemical reactions and physical changes
 - 2) the study of heat flow between a system and its surroundings
 - a. SYSTEM—specific part being analyzed
 - b. SURROUNDINGS—everything outside the system (usually the immediate area)
 - c. UNIVERSE—system + surroundings
 - 3) thermochem rxns. are like regular balanced equations except that they specify the heat flow (heat changes) for the rxn.
 - 4) ENTHALPY (H)-heat content of a substance
 - 5) change in enthalpy = ΔH ; heat change for a process at constant pressure; usually measured in kJ (kilojoules)
 - 6) ΔH is used interchangeably with q.

ENDOTHERMIC:	+ΔH	heat absorbed into system; surroundings cool down
		$(\mathbf{A} + \mathbf{B} + \mathbf{ENERGY} \rightarrow \mathbf{C} + \mathbf{D}) + \mathbf{\Delta}\mathbf{H}$
EXOTHERMIC:	-ΔH	heat released from system; surroundings heat up
		$(A + B \rightarrow C + D + ENERGY) - \Delta H$

- II. Heat Capacity
 - A. HEAT CAPACITY—amount of heat required to change a substance's temperature by exactly 1 °C; common unit: J / °C
 - B. CALORIE (*calorie with a lower-case c*)—amount of heat required to raise the temp of 1 g of pure water by 1 °C
 - C. CALORIE (*Calorie with an upper-case c*)—"diet Calorie" = 1000 calories
 - D. JOULE—SI unit of heat and energy; amount of heat required to raise the temp of 1 g of pure water by 0.239 °C.

UNIT CONVERSIONS:
1 Cal (diet Calorie) = 1000 cal = 1 kcal = 4.184 J
1 J = 0.239 cal $4.184 J = 1 cal$

- E. heat changes can be measured with a CALORIMETER, which is a covered cuplike container
- III. Specific Heat Capacity
 - A. SPECIFIC HEAT CAPACITY (C or c_p)—amount of heat required to raise the temperature of 1 g of a substance by exactly 1 °C.
 - B. C deals with heat requirements and heat retention :
 - low C = low requirements and retention = heats up quickly and cools down quickly
 - 2) high specific heat = high requirements and retention = heat up slowly and cool down slowly
 - C. common unit: $\mathbf{J} / \mathbf{g} \circ \mathbf{C}$
 - D. heat changes can be measured with a CALORIMETER
 - E. metals have low specific heats
 - F. water has the highest specific heat of common substances = $4.184 \text{ J/g} \circ \text{C}$
 - G. equation $\Delta = \text{delta} = \text{``change in''} \qquad \Delta T = (T \text{ final} T \text{ initial})$

$$C = \frac{q}{m \Delta T}$$

H. examples

E1) The temperature of an 89.1 g piece of metal rises from 22.0 °C to 51.1 °C when the metal absorbs 794 J of energy. What is the specific heat of the metal?

SOLUTION:
$$m = 89.1 \text{ g}$$
 $q = 794 \text{ J}$ $T = 51.1 - 22.0 = 29.1 \text{ °C}$
 $C = \frac{q}{m \Delta T} = \frac{794 \text{ J}}{(89.1 \text{ g})(29.1 \text{ °C})} = \frac{0.306}{\text{ g °C}} \frac{\text{J}}{\text{g °C}}$

E2) How much heat energy is needed to increase the temperature of 44.7 g of water from 20.0 to 36.3 °C?

SOLUTION: m = 44.7 g $\Delta T = 16.3 \text{ °C}$ C = 4.184 J/g °C $\Delta T = 36.3 \text{ °C} - 20.0 \text{ °C} - 16.3 \text{ °C}$ $C = \frac{q}{m \Delta T}$ $q = m \Delta T C$ $q = 44.7 \text{ g} (16.3 \text{ °C}) 4.184 \frac{J}{g \text{ °C}} = 3050 \text{ J or } 3.05 \text{ kJ}$

IV. CALORIMETRY-the accurate and precise measurement of the heat change for chemical reactions and physical changes

equation	
$q = \Delta H = m C \Delta T$	(rearrangement of the specific heat equation)
$\mathbf{q} = \Delta \mathbf{H} = (\text{mass of wat}$	er)(specific heat of water)(change in temp)

V. Thermochemical Equations

- A. THERMOCHEMICAL EQUATIONS-equations that show heat changes
- B. AH relates to the coefficients of the balanced equation

Chemical change heat transfers:

 ΔH_r or ΔH_{rxn} = generic HEAT OF REACTION = heat absorbed or released in a chemical rxn. ΔH_{comb} = MOLAR HEAT OF COMBUSTION = heat released in combustion of 1 mol of substance ΔH_{f} = HEAT OF FORMATION = heat absorbed or released to make 1 mol of a cmpd from its elements ΔH^{o}_{f} = STANDARD HEAT OF FORMATION = heat absorbed or released to make 1 mol of a cmpd from its elements in their standard states at 298 K (25 °C)

- VI. Heat and Changes of State
 - A. math problems use ΔH related to coefficients
 - B. problems discuss melting, freezing, boiling, condensing, dissolving
 - C. MOLAR HEAT OF FUSION: $q = (mass / molar mass) (\Delta H_{fus})$
 - D. MOLAR HEAT OF VAPORIZTION: $q = (mass / molar mass) (\Delta H_{vap})$

Physical change heat transfers:

 $\Delta H_{fus} = MOLAR HEAT OF FUSION = heat energy required to melt 1 mol of substance$ $\Delta H_{solid} = MOLAR HEAT OF SOLIDIFICATION = heat energy released freezing 1 mol of substance$ $\Delta H_{fus} = -\Delta H_{solid} \qquad \Delta H_{fus} H_2O = 6.01 \text{ kJ/mol}$

 ΔH_{vap} = MOLAR HEAT OF VAPORIZATION = heat energy required to boil 1 mol of substance

 $\Delta H_{cond} = MOLAR HEAT OF CONDENSATION = heat energy released condensing 1 mol of substance$ $\Delta H_{vap} = -\Delta H_{cond} \qquad \Delta H_{vap} H_2O = 40.7 \text{ kJ/mol}$

ΔH_{soln} = MOLAR HEAT OF SOLUTION = heat energy change due to the dissolving of 1 mol of substance

- VII. Hess' Law
 - A. HESS' LAW OF HEAT SUMMATION—the overall ΔH for a rxn. equals the sum of all ΔH 's for the individual steps involved
 - B. If a chemical equation is written in reverse order, the sign of ΔH must be changed (+ to OR to +)

VIII. Gibbs free energy

$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	
A. $G = free energy$	
1) Exergonic = spontaneous (- ΔG); favorable	
2) Endergonic = nonspontaneous ($+\Delta G$); unfavorable	
B. $H = heat energy$	
1) exothermic= heat given off $(-\Delta H)$; favorable	
2) endothermic = heat absorbed $(+\Delta H)$; unfavorable	
C. $T = Kelvin temperature$	

D. S = entropy (disorder); an increase is favorable ($+\Delta$ S)